skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Richter, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 9, 2026
  2. This study investigates mechanisms that generate regularly spaced iron-rich bands in upland soils. These striking features appear in soils worldwide, but beyond a generalized association with changing redox, their genesis is yet to be explained. Upland soils exhibit significant redox fluctuations driven by rainfall, groundwater changes, or irrigation. Pattern formation in such systems provides an opportunity to investigate the temporal aspects of spatial self-organization, which have been heretofore understudied. By comparing multiple alternative mechanisms, we found that regular iron banding in upland soils is explained by coupling two sets of scale-dependent feedbacks, the general principle of Turing morphogenesis. First, clay dispersion and coagulation in iron redox fluctuations amplify soil Fe(III) aggregation and crystal growth to a level that negatively affects root growth. Second, the activation of this negative root response to highly crystalline Fe(III) leads to the formation of rhythmic iron bands. In forming iron bands, environmental variability plays a critical role. It creates alternating anoxic and oxic conditions for required pattern-forming processes to occur in distinctly separated times and determines durations of anoxic and oxic episodes, thereby controlling relative rates of processes accompanying oxidation and reduction reactions. As Turing morphogenesis requires ratios of certain process rates to be within a specific range, environmental variability thus modifies the likelihood that pattern formation will occur. Projected changes of climatic regime could significantly alter many spatially self-organized systems, as well as the ecological functioning associated with the striking patterns they present. This temporal dimension of pattern formation merits close attention in the future. 
    more » « less
  3. Understanding the origin of eukaryotic cells is one of the most difficult problems in all of biology. A key challenge relevant to the question of eukaryogenesis is reconstructing the gene repertoire of the last eukaryotic common ancestor (LECA). As data sets grow, sketching an accurate genomics-informed picture of early eukaryotic cellular complexity requires provision of analytical resources and a commitment to data sharing. Here, we summarise progress towards understanding the biology of LECA and outline a community approach to inferring its wider gene repertoire. Once assembled, a robust LECA gene set will be a useful tool for evaluating alternative hypotheses about the origin of eukaryotes and understanding the evolution of traits in all descendant lineages, with relevance in diverse fields such as cell biology, microbial ecology, biotechnology, agriculture, and medicine. In this Consensus View, we put forth the status quo and an agreed path forward to reconstruct LECA’s gene content. 
    more » « less
  4. After 4.5 billion years as an evolving and dynamic planet, the Earth continues to evolve but with human‐altered dynamics. Earth scientists have special opportunities and responsibilities to accelerate our understanding of Earth's changes that are transforming our most remarkable home. 
    more » « less
  5. Landscapes are frequently delineated by nested watersheds and river networks ranked via stream orders. Landscapes have only recently been delineated by their interfluves and ridge networks, and ordered based on their ridge connectivity. There are, however, few studies that have quantitatively investigated the connections between interfluve networks and landscape morphology and environmental processes. Here, we ordered hillsheds using methods complementary to traditional watersheds, via a hierarchical ordering of interfluves, and we defined hillsheds to be landscape surfaces from which soil is shed by soil creep or any type of hillslope transport. With this approach, we demonstrated that hillsheds are most useful for analyses of landscape structure and processes. We ordered interfluve networks at the Calhoun Critical Zone Observatory (CZO), a North American Piedmont landscape, and demonstrated how interfluve networks and associated hillsheds are related to landscape geomorphology and processes of land management and land-use history, accelerated agricultural gully erosion, and bedrock weathering depth (i.e., regolith depth). Interfluve networks were ordered with an approach directly analogous to that first proposed for ordering streams and rivers by Robert Horton in the GSA Bulletin in 1945. At the Calhoun CZO, low-order hillsheds are numerous and dominate most of the observatory’s ∼190 km2 area. Low-order hillsheds are relatively narrow with small individual areas, they have relatively steep slopes with high curvature, and they are relatively low in elevation. In contrast, high-order hillsheds are few, large in individual area, and relatively level at high elevation. Cultivation was historically abandoned by farmers on severely eroding low-order hillsheds, and in fact agriculture continues today only on high-order hillsheds. Low-order hillsheds have an order of magnitude greater intensity of gullying across the Calhoun CZO landscape than high-order hillsheds. In addition, although modeled regolith depth appears to be similar across hillshed orders on average, both maximum modeled regolith depth and spatial depth variability decrease as hillshed order increases. Land management, geomorphology, pedology, and studies of land-use change can benefit from this new approach pairing landscape structure and analyses. 
    more » « less
  6. Long-term environmental research networks are one approach to advancing local, regional, and global environmental science and education. A remarkable number and wide variety of environmental research networks operate around the world today. These are diverse in funding, infrastructure, motivating questions, scientific strengths, and the sciences that birthed and maintain the networks. Some networks have individual sites that were selected because they had produced invaluable long-term data, while other networks have new sites selected to span ecological gradients. However, all long-term environmental networks share two challenges. Networks must keep pace with scientific advances and interact with both the scientific community and society at large. If networks fall short of successfully addressing these challenges, they risk becoming irrelevant. The objective of this paper is to assert that the biogeosciences offer environmental research networks a number of opportunities to expand scientific impact and public engagement. We explore some of these opportunities with four networks: the International Long-Term Ecological Research Network programs (ILTERs), critical zone observatories (CZOs), Earth and ecological observatory networks (EONs), and the FLUXNET program of eddy flux sites. While these networks were founded and expanded by interdisciplinary scientists, the preponderance of expertise and funding has gravitated activities of ILTERs and EONs toward ecology and biology, CZOs toward the Earth sciences and geology, and FLUXNET toward ecophysiology and micrometeorology. Our point is not to homogenize networks, nor to diminish disciplinary science. Rather, we argue that by more fully incorporating the integration of biology and geology in long-term environmental research networks, scientists can better leverage network assets, keep pace with the ever-changing science of the environment, and engage with larger scientific and public audiences. 
    more » « less
  7. Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, viruses and other microscopic organisms essential for the health of the planet. These ‘marine plankton’ are unable to swim against currents and should therefore be constantly on the move, yet previous studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. However, proving this theory has been challenging; collecting plankton is logistically difficult, and it is often impossible to distinguish between species simply by examining them under a microscope. However, within the last decade, a research schooner called Tara has travelled the globe to gather thousands of plankton samples. At the same time, advances in genomics have made it possible to identify species based only on fragments of their DNA sequence. To understand the hidden geography of plankton communities in Earth’s oceans, Richter et al. pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist the flow of water, various planktonic species which live close to the surface manage to occupy distinct, stable provinces shaped by currents. Different sizes of plankton are distributed in different sized provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similarities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton communities. Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. These results could allow deeper investigation by marine modellers, ecologists, and evolutionary biologists. Meanwhile, work is already underway to investigate how climate change might impact this hidden geography. 
    more » « less
  8. Abstract The Southern U.S. Piedmont ranging from Virginia to Georgia underwent severe gully erosion over a century of farming mainly for cotton (1800s–1930s). Although tree succession blanketed much of this region by the middle 20th century, gully erosion still occurs, especially during wet seasons. While many studies on gully erosion have focused on soil loss, soil carbon exchange, and stormwater response, the impacts on soil moisture, groundwater, and transpiration remain under‐studied. Using a newly developed 2D hydrologic model, this study analyzes the impacts of gully erosion on hillslope hydrologic states and fluxes. Results indicate that increases in gully incision lead to reduction in groundwater table, root zone soil moisture, and transpiration. These reductions show seasonal variations, but the season when the reduction is maximum differs among the hydrologic variables. Spatially, the impacts are generally the greatest near the toe of the hillslope and reduce further away from it, although the reductions are sometimes non‐monotonic. Overall, the impacts are larger for shallow gully depths and diminish as the incision goes deeper. Lastly, the extent of impacts on a heterogeneous hillslope is found to be very different with respect to a homogeneous surrogate made of dominant soil properties. These results show that through gully erosion, the landscape not only loses soil but also a large amount of water from the subsurface. The magnitude of water loss is, however, dependent on hydrogeologic and topographic configuration of the hillslope. The results will facilitate (a) mapping of relative susceptibility of landscapes to gullying, (b) understanding of the impacts of stream manipulations such as due to dredging on hillslope eco‐hydrology, (c) prioritization of mitigation measures to prevent gullying, and (d) design of observation campaigns to assess the impacts of gullying on hydrologic response. 
    more » « less